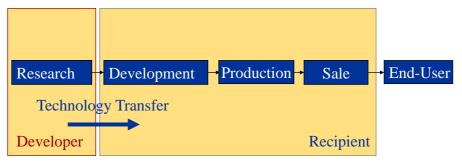
Technology Transfer Mechanisms

- Formation of new technology-based companies from R&D organizations (e.g. spin-offs);
- Licensing patents, software and technical know-how, prototypes;
- Performing contract R&D for clients and transferring the results;
- Sharing information in interactive events (conferences, workshops, briefings, visits);
- · Performing cooperative R&D;
- · Forming R&D or technology transfer consortia;
- · Providing technical assistance;
- · Employing unique R&D facilities and capabilities;
- · Activities which catalyse or facilitate any of the above.


1

Services.

- •To the developer: Partner Search, Funding
 - •To the recipient: Funding, Project generation, Management, BPR, Tech. Marketing
- •To both: IPR/negotiation

Open Science Model

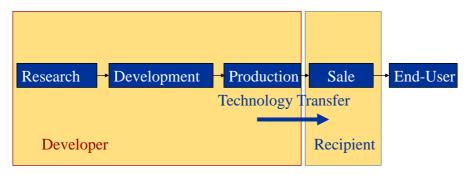
From research to technology transfer: you can "achieve" innovation

2

Open Science Model

- Universities do not retain any IP rights (except citation)
- No need for IP management
- Little incentive to invest in applications (both by culture and lack of protection)
- No direct impact on regional economy
- Still the most widespread model in Europe

License Model


3

•To the developer: Partner Search
•To the recipient: Technology Marketing

•To both : IPR / negotiation

From production to technology transfer: you can "buy" innovation

4

License Model

- PROs can claim ownership of inventions and other IPRs, but must diligently protect and seek licensees
- (Strategic) patenting important because reconciles publication with investment
- · Requires professional IP management
- PROs can grant licenses
- Widespread in the USA since Bayh Dole Act (1980)
- Very successful in the US:
 - o License revenues for PROs and investors
 - o New products
 - o New companies

5

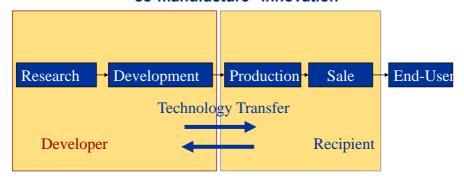
License Model

- Non uniform IP laws across Europe
- Patenting costs are prohibitive (5xUS)
- Ownership of results by PROs not (yet) recognised as best practice)
- Not enough uptake by European industry
- Most deals are with non-European licenses: does not support European economy

6

Services:

•To the developer: Partner Search, Funding,

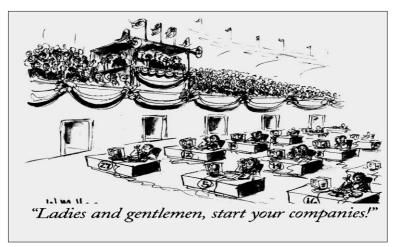

•To the recipient: Funding, BPR, Technology

Marketing

•To both: IPR /negotiation

Interaction Model

From development to technology transfer: you can "co-manufacture" innovation


7

Interaction Model

- · Builds on the Licensing Model and IP
- Background technology & patent become tools to seed development
- Proof of principle is made in collaboration with industry
- Demonstration funded in part by public money (EU Framework programs)
- Foster innovation as interactive process; compatible with University mission if:
 - o Contributes to science
 - o University can capitalise on foreground
 - o Fair share of returns
- Contributes to regional economy

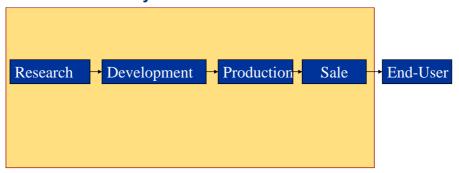
Innovation . . . in business

9

Spin-off dynamics

Spin-off evolution is not the survival of the fittest (those that live by the sword...)

... but of those best able to adapt


10

Services:

Technology watch, Partner search, IPR, BPR, Business Plan, Technology Marketing, Financing, VC and Seed Capital

Spin-out Model

From research to technology transfer: you can "do" innovations

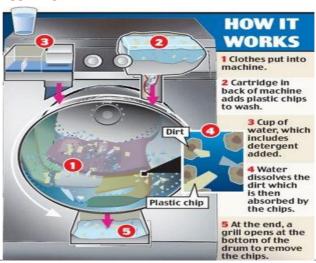
11

Spin-out Model

- · Builds on the Licensing Model
- Background technology used as platform to develop new business concepts
- Proof of principle by the researchers themselves
- Development housed in company structure funded by seed capital and virtual capital
- Only alternative when no industry partner in sight
- Contributes to regional development
- Contributes to rejuvenating economy
- Slow process: more than 10 years for mature companies

Putting Spin-offs to work

The washing Machine spin-off case/1


- Waterless machines. Only one cup of water and plastic chips lasting 100 washes (Leeds University spin-off).
- Xeros received £500,000, or nearly \$1 million, in funding from its partner, IP Group. The new machines would use less than 2 percent of the water and energy of a conventional washing machine.

13

Putting Spin-offs to work

The washing Machine spin-off case/2

14

Putting Spin-offs to work

The washing Machine spin-off case/3

- Plastic chips are used to remove dirt and stains from clothes, leaving them dry and reducing energy consumption as there is no need to use a dryer after the washing cycle.
- A typical washing machine uses about 35 kilograms of water for every kilogram of clothes, in addition to the power needed to heat the water and dry the clothes.

15

Putting Spin-offs to work

The washing Machine spin-off case/4

Exercise/ Questions:

- What are the risks?
- Would you invest in this venture?
- •20' case reading
- Work-Group discussion 20'
- Results presentation and conclusions 35'

16